УДК 665.7 +543.421/429/84+543.544.3

СОСТАВ НЕФТЯНЫХ СМОЛ, ИНГИБИРУЮЩИХ ОСАДКООБРАЗОВАНИЕ В РАСТВОРЕ НЕФТЯНОГО ПАРАФИНА В ДЕКАНЕ, ОБРАБОТАННОГО УЛЬТРАЗВУКОВЫМ ПОЛЕМ

© 2022 г. А. В. Морозова, Г. И. Волкова*, Е. Б. Кривцов

Институт химии нефти Сибирского отделения РАН, Томск, 634055 Россия * E-mail: galivvol@yandex.ru

> Поступила в редакцию 2.06.2021 г. После доработки 14.07.2021 г. Принята к публикации 29.12.2021 г.

Исследовано влияние ультразвука и природы нефтяных смол на состав дисперсионной среды (рафинатов), выделенных из 6 мас. %-ного раствора нефтяного парафина в декане в результате процесса осадкообразования. Независимо от типа нефтяных смол (бензольные или спиртобензольные) или их комплексного действия с ультразвуком в парафиновой фракции рафинатов снижается содержание *н*-алканов и увеличивается изоалканов, в составе парафиновой фракции преобладают *н*-алканы вплоть до $C_{29}H_{60}$ по сравнению с исходным образцом. Установлено, что в рафинате, полученном после отделения осадка из раствора нефтяного парафина в декане, остаются бензольные и спиртобензольные смолы с более низкой молекулярной массой. В бензольных и спиртобензольных смолах, выделенных из рафинатов, существенно снижается содержание нафтеновых и ароматических колец. Бензольные смолы, выделенные из рафинатов, характеризуются более высоким содержанием парафинового углерода и суммарным содержанием гетероатомов, чем исходные смолы. Спиртобензольные смолы, оставшиеся в рафинате, напротив, содержат значительно меньше парафиновых атомов углерода, а суммарное содержание гетероатомов практически не меняется относительно исходных смол. Комплексная обработка практически не влияет на структурно-групповые параметры смол, оставшихся в рафинате. На основе структурно-группового анализа предложены гипотетические структурные формулы бензольных и спиртобензольных смол.

Ключевые слова: бензольные смолы; спиртобензольные смолы; раствор нефтяного парафина в декане; структурно-групповой анализ; ультразвуковая обработка

DOI: 10.53392/27823857-2022-2-1-40, EDN: DQPBPY

В настоящее время в балансе добычи нефтей наблюдается тенденция к увеличению доли тяжелых углеводородов, в которых содержание смолисто-асфальтеновых компонентов достигает 40 мас. % и более. В последнее время исследователи уделяют большое внимание изучению структуры асфальтенов, а нефтяные смолы исследуются в значительно меньшей степени. Тем не менее, анализируя опубликованные работы можно выделить некоторые характерные черты строения нефтяных смол. Нефтяные смолы неоднородны по составу и представляют собой сложную смесь соединений, которые различаются физико-химическими свойствами [1-8]. Нефтяные смолы тяжелых и легких нефтей имеют свои особенности [9, 10], но в основном представляют собой конденсированные системы, содержащие типичные для нефтей гетероциклы, в углеводородной части которых содержатся ароматические и нафтеновые циклы, парафиновые цепочки. Большинство молекул нефтяных смол включают один-три структурных блока, каждый из которых содержит одинтри ароматических и до пяти нафтеновых циклов в таких сочетаниях, что общее число колец в блоке не превышает пять-щесть. Большую часть нефтяных смол составляют химически нейтральные вещества, меньшую – вещества кислого характера. В зависимости от вида смолы могут отличаться большей или меньшей ароматичностью. В первом случае преобладают ароматические кольца и короткие боковые цепи, во втором — длинные боковые цепи и нафтеновые кольца [11].

Отдельные работы посвящены изучению влияния смол на структурно-механические характеристики углеводородных систем. Процесс кристаллизации твердых углеводородов в нефтяном сырье замедляется в присутствии смолистых веществ, являющихся природными депрессорами вязкости и температуры застывания [12, 13].

В работе [14] показано, что добавка бензольных смол эффективно снижает вязкостно-температурные характеристики раствора нефтяного парафина в декане: наблюдается значительное снижение вязкости, энергии активации вязкого течения, удельной энергии разрушения дисперсной системы и температуры застывания. Исследован структурно-групповой состав бензольных (БС) и спиртобензольных (СБС) нефтяных смол, используемых в качестве модифицирующих добавок раствора нефтяного парафина в декане. Бензольные смолы характеризуются более высоким содержанием нафтеновых и ароматических структур и меньшим алифатических фрагментов.

В данной работе продолжены исследования свойств раствора нефтяного парафина в декане, имитирующего поведение высокопарафинистой дисперсной системы, в присутствии нефтяных смол до и после комплексного воздействия, включающего ультразвуковую обработку (УЗО) и последующее введение нефтяных смол. Цель работы — исследование состава и структуры компонентов, формирующих дисперсионную среду (рафинат) после проведения процесса осадкообразования в растворе нефтяного парафина в декане, обработанного ультразвуком, и выявление структурных фрагментов молекул нефтяных смол, ингибирующих процесс осадкообразования.

Экспериментальная часть

Реактивы. Для проведения исследований использованы следующие реактивы: нефтяной парафин (НАФАТА, Россия), *н*-декан (АО «ЭКОС-1», Россия), *н*-гексан (АО «ЭКОС-1», Россия), бензол (АО «ЭКОС-1», Россия), этанол (Vekton JSC, Russia) и силикагель АСА (0.25–0.50 мм) (Hong Kong Chemical Corporation, Hong Kong).

Объекты исследования. Нефтяные смолы выделяли из деасфальтизата высокосмолистой нефти с использованием жидкостно-адсорбционной хроматографии. Деасфальтизат разделяли на фракции в экстракторе Сокслета на силикагеле, активированном при 200°С в течение 3 ч. Фракционирование проводили в следующем порядке: насыщенные углеводороды, ароматические углеводороды, БС и СБС. Фракцию насыщенных углеводородов десорбировали с силикагеля *н*-гексаном. Затем смесью 95:5 = гексан:бензол (об. %) элюировали ароматические соединения. БС десорбировали с силикагеля бензолом, СБС — смесью бензол:этанол = 50:50 об. %. Смеси вещество-растворитель упаривали на роторном испарителе, а выделенные смолы затем помещали в вакуумную печь до полного высыхания (60°С, 48 ч).

Для исследований готовили 6 мас. %-ный раствор нефтяного парафина в декане (НП-д) (исходный раствор). В полученный раствор добавляли 0.3 мас. %. БС или СБС, а также проводили комплексное воздействие на раствор. Комплексное воздействие включает УЗО раствора с помощью ультразвукового дезинтегратора УЗДН 2Т (частота 22 кГц, интенсивность поля 18 Вт/см²) в течение 10 мин с последующим добавлением 0.3 мас. % смол. Подробное описание условий и параметров УЗО приведено в работе [15].

Для выявления особенностей структуры смол, способных удерживать парафиновые углеводороды, в раствор НП-д вносили БС/СБС или осуществляли комплексную обработку (УЗО + БС)/(УЗО + СБС). Чтобы оценить ингибирующую способность нефтяных смол, а также влияние комплексного воздействия, проводили процедуру осадкообразования, а затем выделяли парафиновую фракцию (ПФР) и соответствующие смолы из рафинатов. Осадкообразование проводили на установке, разработанной на основе метода «холодного стержня». Условия проведения эксперимента: температура стержня и теплоносителя составляли 8 и 30°С соответственно, время эксперимента 1 ч, навеска образца 40 г [15]. После отделения осадка полученный рафинат сорбировали на силикагеле и разделяли на алканы, ароматические и нафтеновые углеводороды, БС или СБС (в зависимости от типа добавленных смол) согласно методике, описанной выше. В работе были использованы следующие обозначения: БС-1 и СБС-1 — бензольные и спиртобензольные смолы, выделенные из рафинатов, полученных после добавки к раствору НП-д только нефтяных смол; БС-2 и СБС-2 нефтяные смолы, выделенные из рафинатов после комплексного воздействия на раствор НП-д.

Методы исследования. ПФР и нефтяные смолы исследовали методом ИК-спектроскопии. ИК-спектры ПФР снимали в таблетках КВг. Образцы смол готовили методом высушенной капли. Смолы растворяли в небольшом количестве хлороформа, после чего по капле наносили раствор на одну из пластинок, испаряя растворитель после каждой порции. ИК-спектры регистрировали на FTIR-спектрометре NICOLET 5700. Обработку спектров и определение оптической плотности проводили с помощью программного обеспечения OMNIC 7.2 Thermo Nicolet Corporation. Для определения относительного содержания структурных фрагментов использовали следующие характеристические по-

МОРОЗОВА А. В. и др.

лосы поглощения (п. п.): 1700 см⁻¹ — С=О-группы (в том числе, в сложных эфирах — 1730 см⁻¹ и амидах — 1650 см⁻¹), 1600 см⁻¹ — С=С-связи ароматического кольца, 1465 см⁻¹ — алифатические С—Н-связи, 1380 см⁻¹ — СН₃-группы, 1030 см⁻¹ — S=О-группы, 720 см⁻¹ — (СН₂)_n-группы в алифатических структурах с n > 4. Относительное содержание структурного фрагмента оценивали по спектральному коэффициенту, рассчитанному из отношения интегральной оптической плотности, соответствующей характеристической п. п., к интегральной оптической плотности п. п. 1465 см⁻¹, использованной как внутренний стандарт [16].

ПФР растворяли в толуоле и определяли индивидуальный состав насыщенных углеводородов с использованием высокотемпературного газового хроматографа «Хромос 1000» с пламенно-ионизационным детектором и капиллярной колонкой DB-1HT (фаза — полидиметилсилоксан) длиной 15 м с внутренним диаметром 0.25 мм. В качестве газа-носителя использовали гелий. Хроматограммы получали в режиме линейного программирования температуры от 80 до 390°С со скоростью нагрева 15 град/мин. Конечную температуру поддерживали постоянной в течение 30 мин.

Структурно-групповой анализ (СГА) нефтяных смол проводили на основе данных протонного магнитного резонанса, элементного анализа и молекулярной массы. Анализ распределения протонов в смолах проводили согласно спектрам, полученным на ¹Н ЯМР-Фурье-спектрометре AVANCE III HD 400 фирмы Bruker (Германия). Спектры записывали в растворах CDCl₃, химические сдвиги определены относительно тетраметилсилана при комнатной температуре [17]. Элементный состав исследуемых образцов определяли на элементном анализаторе Vario El Cube. Молекулярные массы (ММ) смол измеряли методом криоскопии в нафталине (концентрация смол 0.5-0.7 мас. %) с использованием прибора «Крион», разработанного в ИХН СО РАН. По данным СГА построены гипотетические структурные формулы молекул нефтяных смол с использованием программы Compaq Visual Fortran 6.6 [18, 19], которая основана на применении алгоритма расчетов по методу Монте-Карло.

Результаты и их обсуждение

Характеристика парафиновой фракции рафинатов. Для характеристики структуры молекул, входящих в состав ПФР, проведен их анализ методом ИК-спектроскопии. ПФР, выделенная из рафината после УЗО раствора НД-д, характеризуется более высоким содержанием парафиновых структур с дли-

	Положение полосы поглощения, см ⁻¹			
ПФР	720	1380		
	Нормированные оптические плотности относительно полосы 1465 см ⁻¹ , отн. ед.			
Исходная	0.264	0.417		
+Y3O	0.276	0.421		
+BC	0.209	0.678		
+Y3O $+$ EC	0.222	0.727		
+СБС	0.200	0.705		
+УЗО + СБС	0.202	0.726		

Таблица 1. Нормированные оптические плотности полос поглощения в ИК-спектрах парафиновой фракции рафинатов

ной метиленовых цепочек больше четырех (табл. 1). Добавка нефтяных смол как к исходному, так и обработанному ультразвуком раствору, приводит к снижению содержания *н*-алканов и увеличению изоалканов.

Методом ГХ в составе ПФР идентифицированы н-алканы состава С13-С38. Характер молекулярно-массового распределения (ММР) н-алканов как в исходном, так и в обработанных образцах мономодальный, однако наблюдается смещение максимума MMP *н*-алканов на C₂₅H₅₂ после УЗО и C₂₆H₅₄ после добавки нефтяных смол и комплексного воздействия (рис. 1). После УЗО раствора в рафинате обнаружено большее количество *н*-алканов состава С₁₃-С₂₆, а после добавки нефтяных смол и комплексного воздействия — н-алканов С23-С28 по сравнению с исходным образцом. В присутствии СБС в рафинате остается больше н-алканов С23-С28, чем с добавкой БС, что, вероятно, связано со структурными особенностями нефтяных смол. Комплексное воздействие нивелирует выявленные различия в распределении н-алканов.

Характеристика нефтяных смол. Для того, чтобы установить структурные фрагменты молекул смол, которые оказывают большее влияние на процессы ингибирования в нефтеподобных системах, обработанных ультразвуком, исследованы смолы, выделенные из рафинатов, и проведено сравнение их структуры с исходными.

Значение средней ММ исходных БС в 1.4 раза меньше, чем СБС (табл. 2). По данным элементного анализа БС отличаются от СБС несколько большей водородоненасыщенностью (отношение H/C, табл. 2) и меньшим суммарным содержанием гетероэлементов (особенно S и O).

Согласно результатам СГА, усредненная молекула БС содержит один-два блока (m_a) , восемь колец,

Рис. 1. Влияние способа обработки раствора НП-д на молекулярно-массовое распределение *н*-алканов в составе парафиновой фракции рафинатов.

из которых три ароматические и пять нафтеновые. Степень замещенности высокая (0.6), но несколько ниже по сравнению с СБС. Фактор ароматичности в усредненной молекуле БС выше, чем в СБС. Значения Сα и Су указывают на то, что усредненная молекула БС содержит алкильные заместители с длиной цепи не более двух-трех атомов углерода. Усредненная молекула СБС состоит из двух структурных блоков, содержит восемь-десять колец, три-четыре из которых ароматические и пять-шесть -нафтеновые. Степень замещенности высокая (0.7): в среднем на 1 кольцо приходится больше трех заместителей (алифатические фрагменты или нафтеновые кольца) [20]. Количество атомов углерода в алифатических фрагментах (Сп) в усредненной молекуле СБС в 3 раза выше, чем в БС. Выявленные особенности в структуре нефтяных смол, по-видимому, обусловливают различие в ингибирующей активности БС и СБС. Более легкие усредненные молекулы БС, которые содержат значительно меньше атомов углерода в алифатических заместителях и структурных фрагментов, содержащих гетероатомы, по сравнению с СБС, в большей степени способны удерживать молекулы нефтяного парафина в дисперсионной среде.

Около 70% нефтяных смол, выделенных из рафинатов, становятся одноблочными. Это приводит к тому, что молекулярная масса БС-1, БС-2, СБС-1, СБС-2 снижается в 1.2 и 1.5 раз для БС и СБС соответственно. Общее число колец в выделенных смолах уменьшается до пяти–шести, что на три кольца (одно ароматическое и два нафтеновых) меньше, чем в усредненных молекулах исходных нефтяных смол. Содержание гетероатомов и парафиновых атомов углерода (C_{Π}) в усредненных молекулах БС-1, БС-2 увеличивается по сравнению с БС. В СБС-1 и СБС-2 количество гетероатомных структур не изменяется, значение параметра C_{Π} уменьшается относительно СБС. Степень замещенности ароматических ядер во всех образцах практически не изменяется.

Значения ММ и содержание гетероэлементов в усредненных молекулах нефтяных смол, выделенных из рафинатов (БС-1, БС-2, СБС-1, СБС-2), различаются между собой в меньшей степени, чем эти параметры в исходных БС и СБС. При сближении значений ММ (БС-1, БС-2, СБС-1, СБС-2) уравнивается содержание как ароматических (K_a), так и нафтеновых колец (К_н) в усредненных молекулах этих смол, а алифатические заместители в СБС-1 и СБС-2 остаются значительно длиннее, чем в БС-1 и БС-2. Согласно полученным данным, а также результатам, представленным в работе [15], можно предположить, что эффективно ингибируют процесс осадкообразования нефтяные смолы с определенным соотношением структурных параметров. По-видимому, структура молекул БС в большей степени соответствуют таким оптимальным соотношениям по сравнению с СБС. Например, согласно значениям расчетных параметров (табл. 2) в БС, оставшихся в рафинате, отношение числа атомов C_a/C_{Π} и C_H/C_{Π} составляет 1 и 1.8, а в СБС — 0.5 и 0.9 соответственно. Таким образом, при равном соотношении ароматических и парафиновых атомов

	Οδραραιι							
Показатели								
		БС	БС-1	БС-2	СБС	СБС-1	СБС-2	
Молекулярная масса, а.е.м.		600	485	510	860	560	605	
Элементный состав, мас. %	С	84.1	79.6	80.4	81.2	76.4	77.2	
	Н	9.3	9.4	9.3	9.7	9.5	9.6	
	Ν	0.7	1.1	1.2	0.6	1.0	1.0	
	S	1.0	2.3	2.2	2.2	3.9	4.0	
	0	4.9	7.6	6.9	6.3	9.2	8.2	
Число атомов в средней молекуле	С	42.0	32.1	33.9	58.2	37.4	38.8	
	Н	55.4	45.0	46.7	83.1	55.6	57.7	
	N	0.3	0.4	0.4	0.4	0.4	0.4	
	S	0.2	0.4	0.3	0.6	0.7	0.8	
	0	1.9	2.3	2.2	3.3	3.2	3.1	
	H/C	1.32	1.40	1.38	1.42	1.49	1.49	
Число углеродных атомов разного типа в	Ca	13.3	8.6	10.1	15.4	8.2	9.0	
средней молекуле	Сн	21.5	15.0	14.8	21.5	13.7	13.3	
	Сп	7.2	8.5	9.1	21.2	15.4	16.5	
	Cα	6.1	4.7	5.0	8.0	4.9	5.2	
	Cγ	3.41	2.7	2.9	5.4	3.7	3.8	
Кольцевой состав	Ко	8.1	5.6	5.9	8.9	5.5	5.5	
	Ка	2.9	2.0	2.3	3.6	2.1	2.3	
	К _{нас}	5.2	3.6	3.6	5.3	3.4	3.3	
Распределение атомов С, %	fa	31.7	26.9	29.7	26.5	22.0	23.2	
	fn	51.0	46.7	43.8	37.0	36.7	34.2	
	f_{Π}	17.2	26.5	26.6	36.5	41.2	42.6	
Степень замещенности	σa	0.6	0.7	0.7	0.7	0.6	0.6	
Число блоков в молекуле	ma	1.5	1.3	1.3	1.7	1.3	1.3	

Таблица 2. Расчетные параметры структуры нефтяных смол, выделенных из высокосмолистой нефти и рафинатов

углерода и более высоком – нафтеновых, нефтяные смолы проявляют большую ингибирующую способность, чем при равном количестве парафиновых и нафтеновых атомов углерода и меньшем ароматических.

Расчетные параметры, представленные в табл. 2, позволили построить гипотетические структурные формулы молекул нефтяных смол (рис. 2).

Использование данных ИК-спектроскопии позволяет получить дополнительную информацию о структурно-групповом составе усредненных молекул нефтяных смол. Согласно полученным значениям спектральных коэффициентов, представленным в табл. 3, БС содержат большее количество ароматических структур, в то время как содержание С=О-групп (в том числе в амидах), степень али-

фатичности (720 + 1380/1600) и разветвленности (1380/1465) ниже, чем в СБС. Для образцов БС-1 и БС-2 наблюдаются более низкое значение степени алифатичности, а содержание С=О-групп, степень ароматичности и разветвленности выше, чем в исходных БС. При сравнении образцов БС-1 и БС-2 видно, что БС-1 характеризуются более высокими значениями степени алифатичности, но имеется тенденция к снижению ароматичности, разветвленности и содержания С=О-групп. Степени алифатичности и ароматичности смол СБС-1 и СБС-2 снижаются по сравнению с исходными СБС, а содержание С=О-групп увеличивается. При сравнении образцов СБС-1 и СБС-2 видно, что смолы СБС-1 обладают более низким значениями степени алифатичности и разветвленности, содержат большее количество

СБС

СБС-1

Рис. 2. Усредненные формулы молекул нефтяных смол.

С=О-групп, в то время как степень ароматичности в СБС-1 немного выше, чем в СБС-2.

По данным СГА и ИК-спектроскопии рассчитано суммарное содержание гетероатомов (O, S, N) в исследуемых смолах (рис. 3). Тенденции изменения суммарного содержания гетероатомов, полученных с использованием этих независимых методов, одинаковы: в БС-1 и БС-2 содержится больше, а в СБС-1 и СБС-2 несколько меньше гетероатомов, чем в исходных БС и СБС соответственно.

Смолы	Положение полосы поглощения, см ⁻¹						
	720 + 1380/1600*	1730	1700	1650	1600	1380	
		Нормированные оптические плотности относительно полосы 1465 см ⁻¹ , отн. ед.**					
БС	2.21	0.22	0.27	0.18	0.33	0.60	
БС-1	2.12		0.55	0.31	0.39	0.67	
БС-2	1.99		0.57	0.28	0.42	0.67	
СБС	2.38	0.41	0.29	0.30	0.28	0.63	
СБС-1	2.27		0.52	0.33	0.24	0.62	
СБС-2	2.31		0.58	0.33	0.23	0.63	

Таблица 3. Нормированные оптические плотности полос поглощения в ИК-спектрах смол

* Степень алифатичности.

** Отн. ед. — относительные единицы.

Рис. 3. Суммарное содержание гетероатомов в усредненных молекулах нефтяных смол.

Заключение

Выявлено, что после добавки нефтяных смол и комплексного воздействия в рафинате (согласно данным ИК-спектроскопии) увеличивается количество изоалканов. Независимо от типа введенных смол (БС или СБС) или их комплексного действия с ультразвуком, изменяется распределение *н*-алканов в составе парафиновой фракции рафинатов. Для всех образцов характерно смещение максимума ММР и преобладание *н*-алканов вплоть до С₂₉H₆₀ по сравнению с исходным образцом.

Установлено, что исходные БС и СБС при практически равной ароматичности и степени замещенности ароматических колец отличаются значениями средней молекулярной массы, содержанием гетероатомов и длиной алифатических заместителей. Нефтяные смолы, выделенные из рафинатов после отделения осадка нефтяного парафина, имеют близкие значения не только степени ароматичности, разветвленности, но и содержат более близкое число гетероатомов, одинаковое количество колец и блоков в усредненной молекуле. Описанные закономерности позволяют сделать предположение о том, что существует оптимальная структура нефтяных смол, которая способствует ингибированию процесса осадкообразования. По-видимому, для бензольных смол характерно такое соотношение степени ароматичности, алифатичности и содержания гетероатомов, которое делает их более эффективными ингибиторами процесса осадкообразования по сравнению с СБС.

Значительное увеличение степени ингибирования осадкообразования после комплексного воздействия можно объяснить диспергированием надмолекулярных образований нефтяного парафина ультразвуковым полем и последующей сорбцией нефтяных смол на кристаллах парафинов высокой дисперсности, что приводит к повышению седиментационной устойчивость дисперсной системы при понижении температуры.

Финансирование работы

Работа выполнена в рамках государственного задания ИХН СО РАН, финансируемого Министерством науки и высшего образования Российской Федерации

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Морозова Анастасия Владимировна, аспирант, E-mail: anastassiya petukhova@mail.ru,

ORCID: https://orcid.org/0000-0001-6381-9468

Волкова Галина Ивановна, к.х.н., с.н.с., E-mail: galivvol@yandex.ru,

ORCID: https://orcid.org/0000-0003-3986-8555

Кривцов Евгений Борисович, к.х.н., с.н.с., Е-mail: john@ipc.tsc.ru.

ORCID: https://orcid.org/0000-0001-5994-0388

Список литературы

- 1. Воронецкая Н. Г., Певнева Г. С., Корнеев Д. С., Головко А. К. Влияние асфальтенов на направленность термических превращений углеводородов тяжелой нефти // Нефтехимия. 2020. Т. 60. № 2. С. 183-191. https://doi.org/10.31857/S0028242120020100 [Voronetskaya N. G., Pevneva G. S., Korneev D. S., Golovko A. K. Influence of asphaltenes on the direction of thermal transformations of heavy oil hydrocarbons // Petrol. Chemistry. 2020. V. 60. N 2. P. 166-173. https://doi.org/10.1134/S0965544120020103].
- 2. Камьянов В. Ф., Аксенов В. С., Титов В. И. Гетероатомные компоненты нефти. Новосибирск: Наука, 1983. 237 c.
- 3. Батуева И. Ю., Гайле А. А., Поконова Ю. В. Химия нефти. Л.: Химия, 1984. 360 с.
- 4. Сергиенко С. Р. Очерк развития химии и переработки нефти. М.: Изд-во АН СССР, 1955. 310 с.
- Golovko A. K., Grin'ko A.vA. Structural transformations 5. of petroleum resins and their fractions by thermolysis // Petrol. Chemistry. 2018. V. 58. N 8. P. 599-606. https://doi.org/10.1134/s0965544118080078

- 6. Gordadze G. N., Giruts M. V., Poshibaeva A.vR., Poshibaev V. V., Gavanova A. A., Postnikov A. V., Postnikova O. V. Study of the structure of benzene- and alcohol-benzene-extractable resins and kerogen of rock organic matter (by example of Bazhenovo Formation Rocks from the North of the Gyda Peninsula) // Petrol. Chemistry. 2019. V. 59. N 11. P. 1177-1189.
- 7. Чешкова Т.В., Коваленко Е.Ю., Герасимова Н.Н., Сагаченко Т.А., Мин Р. VC. Состав и строение смолистых компонентов тяжелой нефти месторождения Усинское // Нефтехимия. 2017. Т. 57. № 1. C. 33-40. https://doi.org/10.7868/S0028242117010051 [Cheshkova T. V., Kovalenko E. Y., Gerasimova N. N., Sagachenko T. A., Min R. S. Composition and structure of resinous components of heavy oil from the oilfield Usinscje // Petrol. Chemistry. 2017. V. 57. N 1. P. 31-38. https://doi.org/10.1134/S0965544117010054].
- 8. Li T., Xu J., Zou R., Feng H., Li L.; Wang J. Y., Cohen Stuart M. A., Guo X. Resin from Liaohe Heavy Oil: Molecular Structure, Aggregation Behavior, and Effect on Oil Viscosity // Energy Fuels 2018. V. 32. N 1. P. 306-313. https://doi.org/10.1021/acs.energyfuels.7b03279
- 9. Герасимова Н. Н., Чешкова Т. В., Голушкова Е. Б., Сагаченко Т.А., Мин Р.С. Состав и структура смолистых компонентов легкой и тяжелых нефтей // Известия Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330. № 110. C. 155-164.
- 10. Cheshkova T. V., Sergun V. P., Kovalenko E. Yu., Gerasimova N. N., Sagachenko T. A., Min R. S. Resins and asphaltenes of light and heavy oils: Their composition and structure // Energy & Fuels. 2019. V. 33. N 9. P. 7971-7982.
- https://doi.org/10.1021/acs.energyfuels.9b00285 11. Головко А.К., Горбунова Л.В., Камьянов В.Ф. Закономерности в структурно-групповом составе высокомолекулярных гетероатомных компонентов нефтей
- // Журн. геология и геофизика. 2010. Т. 51. № 3. C. 364-374. 12. Yudina N. V., Loskutova Yu.V. Formation of organic deposits in model petroleum systems // Petrol. Chemistry. 2020. V. 60. N 6. P. 693-698.

https://doi.org/10.1134/S0965544120060110

- 13. Beshagina E. V., Yudina N. V., Loskutova Yu. V., Krutey A. A. Paraffin blockage specificsin model petroliferous systems // Procedia Chemistry. 2014. V. 10. 229-235. https://doi.org/10.1016/j.proche.2014.10.039
- 14. Morozova A. V., Volkova G. I. Effect of the Petroleum Resin Structure on the Properties of a Petroleum-Like System // Petrol. Chemistry. 2019. V. 59. N 10. P. 1153-1160. https://doi.org/10.1134/S0965544119100086
- 15. Морозова А. В., Волкова Г. И. Влияние нефтяных смол и ультразвуковой обработки на свойства нефтеподобной системы // Химия в интересах устойчивого развития. 2020. Т. 28. № 5. С. 508-514. https://doi.org/10.15372/KhUR20202570 [Morozova A. V., Volkova G. I. The effect of petroleum resins and ultrasonic treatment on the properties of a

petroleum-like system. Chem. Sustain. Dev. 2020. V. 28. P. 494–500. https://doi.org/10.15372/KhUR20202570].

- Петрова Л. М., Аббакумова Н. А., Фосс Т. Р., Романов Г. В. Структурные особенности фракций асфальтенов и нефтяных смол // Нефтехимия. 2011. Т. 51. N 4. C. 262–266 [Petrova L. M., Abbakumova N. A., Foss T. R., Romanov G. V. Structural features of asphaltene and petroleum resin fractions // Petrol. Chemistry. 2011. V. 51. P. 252–256. https://doi.org/10.1134/S0965544111040062].
- Огородников В. Д. ЯМР-спектроскопия как метод исследования химического состава нефтей Инструментальные методы исследования нефти. Под ред. Г. В. Иванова. Новосибирск: Наука, 1987. 496 с.
- 18. Patrakov Yu. F., Fedyaeva O. N., Kamyanov V. F. A structural model of the organic matter of barzas

liptobiolith coal // Fuel. 2005. V. 84 (2–3). P. 189–199. https://doi.org/10.1016/j.fuel.2004.08.021

- Дмитриев Д. Е., Головко А. К. Превращения смол и асфальтенов при термической обработке тяжелых нефтей // Нефтехимия. 2010. Т. 50. № 2. С. 118–125 [Dmitriev D. E., Golovko A. K. Transformations of resins and asphaltenes during the thermal treatment of heavy oils // Petrol. Chemistry. 2010. V. 50. N 2. P. 106–113. https://doi.org/10.1134/S0965544110020040].
- Иовик Ю. А., Кривцов Е. Б. Термические превращения серосодержащих компонентов окисленного вакуумного газойля // Нефтехимия. 2020. Т. 60. N 3. С. 377– 383. https://doi.org/10.31857/S0028242120030089 [*Iovik Y. A., Krivtsov E. B.* Thermal transformations of sulfur-containing components of oxidized vacuum gas oil // Petrol. Chemistry. 2020. V. 60. N 3. P. 341–347. https://doi.org/10.1134/S0965544120030081].